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An ultra-peripheral collision
Particles can be produced if a photon from one 
nucleus interacts with a  photon from the 
other (b > 2R). In principle any fermion pair can be 
created: e+ e–, µ+ µ–, or qq

Large charge of heavy ions => large number of eq. photons. 
Two-photon interactions: σAA = Z1

2*Z2
2 * σNN
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Two-photon interaction not the only  possibility: ⇒ The photon tends 
to fluctuate to a vector meson (ρ, ω, φ). Vector Meson Dominance. 



Two-photon interactions (and any coherent process) will be 
significant only at very high energies:

Max CM energies at different accelerators, determined 
by the coherence requirement: 

W ≈ 2 γCM (hc/R)
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For Au/Pb
γCM W [GeV]

BNL AGS 3 0.1
CERN SPS 9 0.5
RHIC 100 6
LHC 2,940 160

RHIC is the first heavy-ion accelerator where significant 
particle production can occur in ultra-peripheral collisions!



4

A model [STARLight] predicts cross sections, rapidity and pT
distributions of e.g. vector mesons. 

For Au+Au 200 GeV at RHIC:
———————————

σ [mb]  (req. Xn)
———————————
ρ 590   (170)
ω 59   ( 17)
φ 39   ( 13)
J/ψ 0.29  (0.16)
———————————

[Baltz, Klein, Nystrand: PRC 60(1999)014903, 
PRL 89(2002)012301]
Cross sections in the 0.3-600 mb range!
Requiring neutron coinc. lowers σ by 
factor 1.8 – 3.5.

Photonuclear part dominates over γ+γ
The pT distribution determined by the
nuclear Form Factor, pT ∼ 1/R
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• Peak at low pTD 
coherent interaction

Signal region: 
pT<0.15 GeV

Topology Trigger
AuAuD AuAuρ0 

200GeV

Preliminary

STAR Result

Cross-sections consistent with expectations from 
STARLight

[PRL 89(2002)272302; 
also see e+e- low Minv continuum result (52 pairs): 

PRC 70 (2004) 031902(R)]



PHENIX (bird’s eye view)

beam-beam 
counters 

(BBC)

zero-degree 
calorimeter 
(ZDC)

beam pipe
electromagnetic 
calorimeter (EMCal)

Drift Chamber, Pad 
Chamber, RICH,..
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Goal:
Via electron channel, look
for heavier vector meson (J/Ψ)
and continuum at higher Minv.

L1 UltraPeripheral Trigger: 
• veto on BBC (|y| ~3-4) 
• neutron(s) in at least one ZDC 
• large energy (0.8 GeV) cluster in EMCal.



Electron Id

Cut away high mult. events.
Look for di-electrons in the central 
arm.

Example of electron cut : Compare 
reconstructed Energy and 
momentum 

Chosen variable 
dep = (E-p)/sigma, 
where sigma is mom-dependent.
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pT Distributions J/Ψ in pp: Peaks much later than
UPC events..

pT (GeV/c)

pT for all di-electron combinations.
Fit is for Au nuclear form factor. 

Coherent events are expected to have a peak at low pT w. shape given by nuclear
form factor (see e.g. nucl-th/0112055) [somewhat more complicated for γ+γ continuum]

Approx. agreement with expectations seen => coherence observed!
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Minv Distributions
[+ pT < 150 MeV coherence requirement][with same electron cuts as for pT distr..]

Note that with Eth=0.8 GeV, coherent di-electron acceptance starts at ~1.6 GeV. 

Hint of J/Ψ-signal seen? + maybe coherent γ+γ -> e+e- as the falling shape?
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STARLight shape

The e+e- continuum and J/Ψ -> e+e-

contributions from a STARLight
calc., based on an undisclosed 
luminosity.., and a simple acceptance 
filter (not GEANT-based) are 
shown. 

The absolute yields can not
be compared to what was shown
on the previous slides.

Accepted/
geometry
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Summary and Outlook

• Many interesting things to investigate in 
ultra-peripheral collisions. First chance at RHIC.

• We see something that could be J/Ψ, and high mass
di-lepton continuum.. The candidates pT distribution
is consistent with expectations for coherent events..

• Overall yield is unfortunately low. Hopefully this will
improve with final calibrations and perhaps a better 
vertex reconstruction for these events.
Will work on simulation comparisons and correction
estimates.

•Also have some runs without E>0.8 GeV cut in trigger.
Could look at low Minv continuum and ρ for those runs.
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Coherence

Many scattering centra

Total scattering amplitude:
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F(q) – Nuclear
Form Factor

t = q2 ; For small mom. transfers: 
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pA γγ

σσ
=

~ 4 · 104 for Au..
(assuming no shadowing)

→ 0 for q > 1/R 
1/R ~ 30 MeV/c for Au 13



Cuts

For each event:
|zvertex| <= 30 cm
ntracks <= 5

// at least one BBC side should be really quiet
(bbcsq== 0 || bbcnq== 0) 
// at least one ZDC side should have a real neutron  
(zdcse>=30 || zdcne>=30) 

For each electron/track:
fabs(dep)<3 // E over p 
emc_match<4 // z and phi emc match
disp<5      // ring cut
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